Photoionization of isooctane and n-octane in intense laser fields. I. Effect of irradiance on ionization rates.

نویسندگان

  • Andrew T Healy
  • Sanford Lipsky
  • David A Blank
چکیده

The population of ejected electrons following multiphoton ionization of neat liquids isooctane and n-octane is investigated over a large range of ionizing irradiance I(ex). Transient absorption (TA) at 1200 nm in both neat liquids is measured in a 60 mum path at time delays of 0.7 and 2.5 ps following an intense 400 nm (3.1 eV) ionizing pulse. As the irradiance of this pulse is varied over the range from 4 to 410 TWcm(2), the dependence of TA on I(ex) exhibits the periodic structure theoretically predicted for multiphoton channel openings and closings. At low I(ex) (<9 TWcm(2)), TA in isooctane is proportional to I(ex) (n) where n=3, consistent with nonresonant, near threshold ionization (liquid phase ionization potential=8.6 eV). At I(ex)>9 TWcm(2), n declines with increasing I(ex) up to I(ex)=13 TWcm(2), at which point n abruptly increases to 4. The pattern is repeated at I(ex)>13 TWcm(2), albeit with n declining from 4 and then abruptly increasing to 5 as I(ex) becomes greater than 100 TWcm(2). A similar trend is observed in n-octane. The dependence of the TA on I(ex) in the regions of channel openings and closings is compared to the nonperturbative, strong field approximation developed by Reiss [Phys. Rev. A 22, 1786 (1980)].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoionization of isooctane in intense laser fields. II. The effect of irradiance on electron dynamics.

Thin path length jets (60 microm) of liquid isooctane have been photoionized with 36-70 fs pulses of 3.1 eV photons. Decay of the transient absorption (TA) at 1200 nm (assigned as predominantly due to absorption by the electron) has been examined over a time interval from 0.5 to 40 ps and over an irradiance range from 7 to 407 TW/cm(2). This range of irradiance covers a region that encompasses ...

متن کامل

Theory of Gas Ionization by Intense Electromagnetic Fields

The distribution function of the electrons produced in the interaction between an intense electromagnetic wave and a neutral gas is derived and is shown to be nonequilibrium and anisotropic. By assuming that the time scale of gas ionization is much greater than the field period, it is shown that the electron distribution function formed in microwave and optical discharges has sharp anisotropy a...

متن کامل

A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing transform

Articles you may be interested in Sensitive dependence of hydrogen Balmer-alpha laser-induced fluorescence signal from hydrogen neutral beam on background magnetic field Recent development of self-interaction-free time-dependent density-functional theory for nonperturbative treatment of atomic and molecular multiphoton processes in intense laser fields Towards the realization of the quantum che...

متن کامل

Study of laser ablation using nano-second laser pulses

 In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...

متن کامل

Non-linear photoionization in the soft X-ray regime

At the new Free-electron LASer in Hamburg FLASH, we have studied photon-matter interaction by means of ion time-of-flight spectroscopy on gases in the soft X-ray regime. Emphasis was laid on the quantitative investigation of non-linear effects upon photoionization by the highly intense soft X-ray laser pulses. In the photon energy range from 38 to 93 eV, we have observed non-linearities due to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 21  شماره 

صفحات  -

تاریخ انتشار 2007